3.1399 \(\int \frac{x^6}{\sqrt{2+x^6}} \, dx\)

Optimal. Leaf size=179 \[ \frac{1}{4} x \sqrt{x^6+2}-\frac{x \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt{x^6+2}} \]

[Out]

(x*Sqrt[2 + x^6])/4 - (x*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*E
llipticF[ArcCos[(2^(1/3) + (1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(4*2^(1/3)*3^(
1/4)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*Sqrt[2 + x^6])

________________________________________________________________________________________

Rubi [A]  time = 0.0474975, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {321, 225} \[ \frac{1}{4} x \sqrt{x^6+2}-\frac{x \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}\right )^2}} F\left (\cos ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt{3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt{x^6+2}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/Sqrt[2 + x^6],x]

[Out]

(x*Sqrt[2 + x^6])/4 - (x*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*E
llipticF[ArcCos[(2^(1/3) + (1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(4*2^(1/3)*3^(
1/4)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*Sqrt[2 + x^6])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^6}{\sqrt{2+x^6}} \, dx &=\frac{1}{4} x \sqrt{2+x^6}-\frac{1}{2} \int \frac{1}{\sqrt{2+x^6}} \, dx\\ &=\frac{1}{4} x \sqrt{2+x^6}-\frac{x \left (\sqrt [3]{2}+x^2\right ) \sqrt{\frac{2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt{3}\right ) x^2\right )^2}} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}+\left (1-\sqrt{3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt{3}\right ) x^2}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [3]{2} \sqrt [4]{3} \sqrt{\frac{x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt{3}\right ) x^2\right )^2}} \sqrt{2+x^6}}\\ \end{align*}

Mathematica [C]  time = 0.0078408, size = 39, normalized size = 0.22 \[ \frac{1}{4} x \left (\sqrt{x^6+2}-\sqrt{2} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{x^6}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/Sqrt[2 + x^6],x]

[Out]

(x*(Sqrt[2 + x^6] - Sqrt[2]*Hypergeometric2F1[1/6, 1/2, 7/6, -x^6/2]))/4

________________________________________________________________________________________

Maple [C]  time = 0.031, size = 29, normalized size = 0.2 \begin{align*}{\frac{x}{4}\sqrt{{x}^{6}+2}}-{\frac{x\sqrt{2}}{4}{\mbox{$_2$F$_1$}({\frac{1}{6}},{\frac{1}{2}};\,{\frac{7}{6}};\,-{\frac{{x}^{6}}{2}})}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^6+2)^(1/2),x)

[Out]

1/4*x*(x^6+2)^(1/2)-1/4*2^(1/2)*x*hypergeom([1/6,1/2],[7/6],-1/2*x^6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{\sqrt{x^{6} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{6}}{\sqrt{x^{6} + 2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(x^6 + 2), x)

________________________________________________________________________________________

Sympy [C]  time = 0.684149, size = 36, normalized size = 0.2 \begin{align*} \frac{\sqrt{2} x^{7} \Gamma \left (\frac{7}{6}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{6} \\ \frac{13}{6} \end{matrix}\middle |{\frac{x^{6} e^{i \pi }}{2}} \right )}}{12 \Gamma \left (\frac{13}{6}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(x**6+2)**(1/2),x)

[Out]

sqrt(2)*x**7*gamma(7/6)*hyper((1/2, 7/6), (13/6,), x**6*exp_polar(I*pi)/2)/(12*gamma(13/6))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{\sqrt{x^{6} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(x^6 + 2), x)